Open menu

Cozile cometare

2.2 Formarea cozilor cometelor

              Particulele care formează capul și coada cometei rezultatului din fragmentarea nucleului, și prin urmare, pentru a descrie mai ușor mișcarea lor, acest lucru a fost făcut în legătură cu nucleul cometei.

              Deoarece coada cometei este, în general, în direcția opusă Soarelui, chiar de pe vremea lui Kepler și până în zilele noastre astronomii cred că acest fapt se datorează o forță de expulzare a Soarelui Ei si-au  imaginat tot felul de mecanisme specifice pentru a explica un astfel de impuls respingătoare opus atracției gravitațională. Valoarea accelerației produse de  FN la o distanță 1a.u .. este K2. La r distanta de Soare această accelerare este de K2/r2.

              Dacă forta Rp este mai mare decât atracția, valoarea accelerației respingătoare este K2Rp/r2.

              Ambele accelerații au aceeași direcție, însă cursurile contrare; în consecință, rezultanta lor va fi:

                               (2.7) unde   (2.8)

              Acceleratia respingătoare a particulelor se deplasează în raport cu nucleul comform:

                             (2.9)

              Cozile cometelor sunt clasificate pe Bredihin conform mediei de accelerare în raport cu nucleu, și anume:

              Tip I - în cazul în care 1 + μ = 12; cozi gazoase, aproape rectilinii, în prelungirea vectorului raza cometei, ușor curbată în direcție opusă mișcării.

              -Tipul II - în cazul în care 1 + μ = 1; cozile constau praf solid, curbare puternic în direcția opusă mișcării.

              -Tipul III -Unde 1 + μ = 0,2; ele sunt cozi anormale îndreptate de la nucleul la soare; ele constau din fragmente solide si sunt foarte curbate în directia opusa miscarii.

              În acest clasificare a cozi de comete-l este de remarcat faptul că "forta respingatoare depinde de natura substanței: gazul cel mai accelerat este, praful solid este mai puțin accelerat.

Explicatia pentru formare  cozii cometei  este că caldura  solara evapora gazele nucleu care  leaga particulele solide ale nucleului, și apoi vântul solar le disipa în sens anti-solar (într-o direcție opusă Soarelui). Această explicație este frecvent în contradicție cu datele experimentale.

              Există multe comete cu o distanță mai mare decât la periheliu 2a.u., care rămân permanent la o astfel de distanta de la Soare incat caldura  nu poate produce practic nici un efect. Cu toate acestea, cometa Humason (1962 VII), de exemplu, deși situată dincolo de orbita lui Marte, a avut o coadă mare. Marea  cometă în 1927 a avut o distanță periheliu de mai mult de 4 au și fost vizibil cu ochiul liber. Este posibil să se admită că acestea au fost doar conglomerate de gheață cu dimensiuni de câteva zeci de kilometri care se evaporă  de la caldura atunci când află la aceeași distanță ca și Jupiter?

              Alte comete se deplaseze în imediata vecinătate a Soarelui șarată doar o coadă mica (Ikeya-Seki 1965). (Apud Littleton).

              Conform teoriei vortex, cozile cometelor sunt datorate frecvente de permanenta fragmentare a nucleului cometei și de acceleratia diferita a acestor particule

              Pe baza acestei teorii nucleul unei comete se clasifica astfel:

              Cometele tip A conține un nucleu neomogen format din particule de diferite densități. Coeziunea a acestor particule de diferite densitati este, în general, cauzat de apă sau gaze ce coexista în nucleul cometei înghețat.

              Cometele tip B conține un nucleu omogen format din particule asemănătoare fizic sau altfel de particule cu densitate destul de egala.

              Să presupunem că o cometă de tip A fiind la o distanță r de la Soare In timpul mișcării orbitale, datorită forțelor mici de coeziune, din nucleul cometei poate duce de fragmentare următoarele tipuri de particule:

              a) particule cu mai puțin de densitate nucleul are (gaze și praf solid, R '1);

              b) particule cu densitate mai mare decât a nucleului are (particule solide, r 2 ');

              c) particule cu aceeași densitate a nucleului.

              Conform celor demonstrate mai sus pentru r'1<r'nucleus < r'2rezulta:

a1> a'nucleus > a2 Þ r1 > rnucleus >r2.. (2.10)

              După fragmentarea, mișcarea particulelor rezultate din nucleu cometei este diferențiată (. A se vedea figura 2.2), care este:

$1¨Particulele solide având o densitate mai mare decât a nucleului sunt cel mai puțin accelerate; acestea vor fi înscrise pe orbite interioare ale nucleului și forma cozi anormale direcționate spre Soare;

$1¨Particulele solide având densitate mai mică decât nucleul și accelerarea similar va fi, prin urmare, înscris pe orbite exterioare la nucleu ca și în cazul "împins" de acesta. Aceste particule forma cozi de tip II;

$1¨ Particulele volatilizate (gaze), care au cel mai mic densitatea, va fi cel mai accelerat în raport cu nucleul și va forma cozi de tip I pe orbite exterioare de nucleu.

$1¨Particulele solide de aceeași densitate ca nucleu va acoperi aceeași orbită ca nucleu desi nu sunt legați mai fizic la ea. Se observă frecvent că anumite particule (solide) detașate de fragmentare de la nucleul continuat aceeași orbită separat pentru o perioadă, și după câteva zile alăturandu-se din nou nucleului.

Cauza principală a formării cozii  cometelor, la comete tip A este nonomogenitatea structurii nucleului și absența forțelor de coeziune puternice pentru a strânge componente nucleu. Caldura solara, respectiv presiunea solara, începând de la o anumită distanță de Soare, poate intensifica procesul de dezintegrare a nucleului, dar nu se poate determina în mare măsură diferitele  acceleratii ale particulelor rezultate din fragmentare.

 

Figura 2.2 Aspectul unei comete mai multe cozi

              De obicei, o cometă de tip A are o coadă multipla.

              Astfel, Comet 1957 III (Arend-Roland) a avut două cozi:

"Între 22 aprilie și 24 coada principal al cometei a ajuns la 25-30 °, iar coada anormala indreptata spre soare atins lungimea neobișnuita de 15 °."

Cometa mare 1744:

"A trecut prin periheliu la 1 martie, 1744. Dupa o saptamaa devine din nou vizibila. Acesta a fost observabila dimineața, înainte de răsăritul soarelui. Când capul cometei a fost sub orizont, deasupra ar fi fost vizibile de șase cozi luminoase, similar cu Aurora Borealis .

              Cometele tip B. Pentru ca sunt formate dintr-un tip de material (r= constant), aceste comete nu  au nici o coadă, indiferent de elementele lor fiind unite mecanic.

              De exemplu, Comet 1892 - III, descoperit de Holmes la 06 noiembrie 1892, după ce a trecut pe data de 13 iunie 1892. În momentul descoperirii sale, a fost vizibil cu ochiul liber (magnitudine 4-5 m) și semăna o nebuloasă rotunda  cu un diametru de 5’, un pic mai luminos pentru centru, dar fără nucleu și coadă.

              Desigur, după mai multe miscari i de revoluție în jurul Soarelui, o cometă de tip A, fie se dezintegrează prin  pierderea mare de masa a nucleului, sau se transformă într-o cometă de tip B, printr-o structură omogenă a nucleului și seamana mai mult ca un asteroid decât o cometă.

2.2 Forming of cometary’s tails

            The particles forming the head and tail of the comet result from the fragmentation of the nucleus, and therefore, in order to describe more easily their motion, this was done in relation to the nucleus of the comet.

            Because the cometary’s tail is generally in opposite direction to the Sun, even since Kepler's time and till our days astronomers believe that this fact is due to an expelling force of the Sun. They imagined all kinds of specific mechanisms to explain such a repulsive push opposite to the gravitational pull. The value of acceleration produced bay FN at a distance 1a.u.. is K2. At the distance r to Sun this acceleration is K2/r2.

            If the expelling is Rp more than the pull, the value of the repulsive acceleration is K2Rp/r2.

            Both accelerations have the same direction but contrary courses; consequently, their resultant will be:

                          (2.7)  where    (2.8)

            The repulsive acceleration of the moving particles in relation to the nucleus is:

                         (2.9)

            Cometary’s tails are classified by Bredihin according to the mean of acceleration in relation to the nucleus, namely:

            -Type I - where 1+μ 12; gaseous tails, nearly rectilinear, in the extension of the radius vector of the comet, slightly curving in the opposite direction to the motion.

            -Type II - where 1+μ 1; the tails consist of solid dusts, strongly curving in the opposite direction to the motion.

            -Type III -where 1+μ 0,2; they are abnormal tails directed from the nucleus at Sun; they consist of solid fragments and are very curved in the opposite direction of the motion.

            In this classification of the cometary’s tails it is noticeable that the "repulsive push" depends on the nature of the substance: the most accelerated is gas, the solid dust is less accelerated.

            The present explanation of forming cometary’s tails is that solar heath evaporates the nucleus gases that bind the solid particles of the nucleus, and then the solar wind dissipates them in an anti-solar direction (in an opposite direction to Sun). This explanation is frequently in contradiction to experimental data.

            There are many comets with a perihelion distance bigger than 2a.u., which remain permanently to such a distance to the Sun that the solar heath cannot practically produce any effect. Nevertheless the comet Humason (1962 VII), for example, although situated beyond Mars's orbit, had a large tail. The big comet in 1927 had a perihelion distance of more than 4 a.u. and was visible with the naked eye. Is it possible to accept that those were mere ice conglomerates having dimensions of some tens of kilometers which evaporated under the solar heath when situated at the same distance as Jupiter?

            Other comets move in the immediate vicinity of the Sun and show only a tiny tail (Ikeya-Seki 1965). (apud Littleton).

            According to the vortex theory, cometary’s tails are due to the frequent but permanent fragmentation of the comet nucleus and to the acceleration of different particles resulted.

            On the basis of the nucleus composition comets may be classified as follows:

            Comets type A contains a non-homogeneous nucleus formed by particles of different densities. The cohesion of these particles of different densities is generally gotten by frozen water or gases coexisting in the comet nucleus.

            Comets type B contain a homogeneous nucleus formed by physically similar particles or different particle with quite equal density.

            Suppose a comet type A being at a distance r from the Sun. During the orbital motion, because of the tiny forces of cohesion, from the comet nucleus may result by fragmentation the following types of particles:

            a) particles with less density than the nucleus has (gases and solid dust, r'1);

            b) particles with higher density than the nucleus has (solid particles, r'2);

            c) particles with the same density as of the nucleus.

            According to the above demonstrated, for the r'1<r'nucleus < r'2 there is:

a1> a'nucleus > a2 Þ r1 > rnucleus >r2. (2.10)

            After fragmentation, the motion of the particles resulting from the cometary’s nucleus is differentiated (see fig. 2.2), that is:

$1¨      The solid particles having higher density than the nucleus are the least accelerated; they will be inscribed on interior orbits of the nucleus and shape abnormal tails directed to Sun;

$1¨      The solid particles having lesser density than the nucleus and acceleration similar to it will be  consequently inscribed on orbits exterior to nucleus as if "pushed" by it. These particles shape tails of type II;

$1¨      The volatilized particles (gases), which have the least density, will be the most accelerated in relation to the nucleus and will shape tails of type I on outer orbits to nucleus.

$1¨      The solid particles of the same density as the nucleus will cover the same orbit as the nucleus although they are not any more physically bound to it. It is frequently observed that certain (solid) particles detached by fragmentation from the nucleus went on its same orbit separately for a period, and after a few days joined the nucleus again.

The main cause of cometary’s tail formation at type A comets is the non homogeneity of nucleus structure and the absence of strong cohesion forces to tighten up the nucleus components. The solar heath, respectively the solar pressure, beginning from a certain distance from the Sun, may intensify the disintegration process of the nucleus, but cannot determine to a great extent the different acceleration of the particles resulted from fragmentation.

Figure 2.2 Appearance of a comet multiple tails

            Usually, a comet of type A has a multiple tail.

            Thus, Comet 1957 III (Arend-Roland) had two tails:

"Between April 22 and 24 the main tail of the comet arrived at 25-30°, and the abnormal tail directed to Sun reached the unusual length of 15°."

            The big 1744 comet:

"It passed through the perihelion on March 1, 1744. In a week it got visible again. It was observable in the morning before the Sunrise. When the comet head was under horizon, above it were visible six bright tails, similar to aurora borealis.

            Comets type B. Because they are formed from one type of material (r=constant), these comets have no tail regardless of their components being mechanically joined.

            For example, Comet 1892 - III, discovered by Holmes on November 6, 1892, after it passed on June 13, 1892. In the moment of its discovery, it was visible with the naked eye (magnitude 4 - 5m) and looked like a round nebula with a 5' diameter, a little brighter to the center, but without both nucleus and tail.

            Of course, after several revolution motions round the Sun, a comet of type A either disintegrates by a large loss of the nucleus mass, or turns to a comet of type B, getting a homogeneous structure of the nucleus and looking more like an asteroid than a comet.

 

2.2 Forming of cometary’s tails

 

            The particles forming the head and tail of the comet result from the fragmentation of the nucleus, and therefore, in order to describe more easily their motion, this was done in relation to the nucleus of the comet.

 

            Because the cometary’s tail is generally in opposite direction to the Sun, even since Kepler's time and till our days astronomers believe that this fact is due to an expelling force of the Sun. They imagined all kinds of specific mechanisms to explain such a repulsive push opposite to the gravitational pull. The value of acceleration produced bay FN at a distance 1a.u.. is K2. At the distance r to Sun this acceleration is K2/r2.

 

            If the expelling is Rp more than the pull, the value of the repulsive acceleration is K2Rp/r2.

 

            Both accelerations have the same direction but contrary courses; consequently, their resultant will be:

 

                        Cometary tail 01  (2.7)  where    Cometary tail 02(2.8)

 

            The repulsive acceleration of the moving particles in relation to the nucleus is:

 

                        Cometary tail 03 (2.9)

 

            Cometary’s tails are classified by Bredihin according to the mean of acceleration in relation to the nucleus, namely:

 

            -Type I - where 1+μ 12; gaseous tails, nearly rectilinear, in the extension of the radius vector of the comet, slightly curving in the opposite direction to the motion.

 

            -Type II - where 1+μ 1; the tails consist of solid dusts, strongly curving in the opposite direction to the motion.

 

            -Type III -where 1+μ 0,2; they are abnormal tails directed from the nucleus at Sun; they consist of solid fragments and are very curved in the opposite direction of the motion.

 

            In this classification of the cometary’s tails it is noticeable that the "repulsive push" depends on the nature of the substance: the most accelerated is gas, the solid dust is less accelerated.

 

            The present explanation of forming cometary’s tails is that solar heath evaporates the nucleus gases that bind the solid particles of the nucleus, and then the solar wind dissipates them in an anti-solar direction (in an opposite direction to Sun). This explanation is frequently in contradiction to experimental data.

 

            There are many comets with a perihelion distance bigger than 2a.u., which remain permanently to such a distance to the Sun that the solar heath cannot practically produce any effect. Nevertheless the comet Humason (1962 VII), for example, although situated beyond Mars's orbit, had a large tail. The big comet in 1927 had a perihelion distance of more than 4 a.u. and was visible with the naked eye. Is it possible to accept that those were mere ice conglomerates having dimensions of some tens of kilometers which evaporated under the solar heath when situated at the same distance as Jupiter?

 

            Other comets move in the immediate vicinity of the Sun and show only a tiny tail (Ikeya-Seki 1965). (apud Littleton).

 

            According to the vortex theory, cometary’s tails are due to the frequent but permanent fragmentation of the comet nucleus and to the acceleration of different particles resulted.

 

            On the basis of the nucleus composition comets may be classified as follows:

 

            Comets type A contains a non-homogeneous nucleus formed by particles of different densities. The cohesion of these particles of different densities is generally gotten by frozen water or gases coexisting in the comet nucleus.

 

            Comets type B contain a homogeneous nucleus formed by physically similar particles or different particle with quite equal density.

 

            Suppose a comet type A being at a distance r from the Sun. During the orbital motion, because of the tiny forces of cohesion, from the comet nucleus may result by fragmentation the following types of particles:

 

            a) particles with less density than the nucleus has (gases and solid dust, r'1);

 

            b) particles with higher density than the nucleus has (solid particles, r'2);

 

            c) particles with the same density as of the nucleus.

 

            According to the above demonstrated, for the r'1<r'nucleus < r'2 there is:

 

a1> a'nucleus > a2 Þ r1 > rnucleus >r2. (2.10)

 

            After fragmentation, the motion of the particles resulting from the cometary’s nucleus is differentiated (see fig. 2.2), that is:

 

¨      The solid particles having higher density than the nucleus are the least accelerated; they will be inscribed on interior orbits of the nucleus and shape abnormal tails directed to Sun;

 

¨      The solid particles having lesser density than the nucleus and acceleration similar to it will be  consequently inscribed on orbits exterior to nucleus as if "pushed" by it. These particles shape tails of type II;

 

¨      The volatilized particles (gases), which have the least density, will be the most accelerated in relation to the nucleus and will shape tails of type I on outer orbits to nucleus.

 

¨      The solid particles of the same density as the nucleus will cover the same orbit as the nucleus although they are not any more physically bound to it. It is frequently observed that certain (solid) particles detached by fragmentation from the nucleus went on its same orbit separately for a period, and after a few days joined the nucleus again.

 

The main cause of cometary’s tail formation at type A comets is the non homogeneity of nucleus structure and the absence of strong cohesion forces to tighten up the nucleus components. The solar heath, respectively the solar pressure, beginning from a certain distance from the Sun, may intensify the disintegration process of the nucleus, but cannot determine to a great extent the different acceleration of the particles resulted from fragmentation.

 

Cometary tail 03

 

Figure 2.2 Appearance of a comet multiple tails

 

            Usually, a comet of type A has a multiple tail.

 

            Thus, Comet 1957 III (Arend-Roland) had two tails:

 

"Between April 22 and 24 the main tail of the comet arrived at 25-30°, and the abnormal tail directed to Sun reached the unusual length of 15°."

 

            The big 1744 comet:

 

"It passed through the perihelion on March 1, 1744. In a week it got visible again. It was observable in the morning before the Sunrise. When the comet head was under horizon, above it were visible six bright tails, similar to aurora borealis.

 

            Comets type B. Because they are formed from one type of material (r=constant), these comets have no tail regardless of their components being mechanically joined.

 

            For example, Comet 1892 - III, discovered by Holmes on November 6, 1892, after it passed on June 13, 1892. In the moment of its discovery, it was visible with the naked eye (magnitude 4 - 5m) and looked like a round nebula with a 5' diameter, a little brighter to the center, but without both nucleus and tail.

 

            Of course, after several revolution motions round the Sun, a comet of type A either disintegrates by a large loss of the nucleus mass, or turns to a comet of type B, getting a homogeneous structure of the nucleus and looking more like an asteroid than a comet.

 

Amount